欢迎光临上海富继电气有限公司!
主营产品:
小型继电器,凸轮控制器,接近开关,磁力起动器,电机调速器,万能转换开关,电源电涌保护器,船用浮球液位控制器,静态中间继电器,拉绳开关
首页
关于我们
下载中心
品牌专区
技术文章
新闻中心
联系我们
配线器材
高压电器
船用电器灯具
环保仪器仪表
工控元件
船用仪器仪表
浪涌保护器
汇款信息
品牌专区
产品目录
配线器材
绝缘子
铜接头
线卡
钢钉线卡
|
尼龙扎带
不锈钢扎带
|
普通尼龙扎带
|
缠绕管
高压电器
消谐器
高压熔断器
避雷器
|
高压电器配件
高压带电显示器
|
电磁锁
|
加热器
|
高压柜内照明灯
|
船用电器灯具
船用灯具
船用防爆灯
|
船用灯具电器配件
|
船用手提灯
|
机床工作灯
|
船用投光灯
|
船用白炽灯
|
船用荧光灯
|
航行信号灯
|
船用电器
船用伺服机构
|
船用减震器
|
船用填料函
|
船用控制箱
|
船用断路器
|
船用继电器
|
船用变压器
|
船用通用机械
|
船用无线电及附件
|
船用音响信号
|
船用限位开关
|
船用控制按钮开关
|
船用接插件
|
环保仪器仪表
压力控制器
电动执行器
消歇器
温度传感器
差压开关
变送器
信号隔离器
|
电量变送器
|
压力变送器
|
温度变送器
|
电表
指针式电表
|
数显电表
|
电能表
|
导航普航仪器
传话器和传话管路
|
测深锤
|
量角尺
|
平行尺
|
铜雾钟
|
罗经放大镜
|
船用倾斜仪
|
电笛
|
气笛
|
磁罗经
|
万用表
超高阻仪器
|
电雷管测试仪
|
电阻测量仪
|
电桥
|
兆欧表
|
数字式万用表
|
压力表
远传压力表
|
温度控制仪
指针式温控器
|
蒸馏器
|
数字温控仪
|
木材水分仪
木材水份监测仪
|
减压器
医用减压器
|
船用减压器
|
气瓶减压器
|
氨气减压器
|
工控元件
断路器
电动机断路器
|
模数化插座
|
配电箱
|
家用断路器
|
真空断路器
|
断路器附件
|
磁场断路器
|
直流快速断路器
|
万能断路器
|
漏电断路器
|
塑壳断路器
|
微型断路器
|
接触器
船用接触器
|
真空接触器
|
固态接触器
|
接触器附件
|
可逆接触器
|
切换电容接触器
|
直流接触器
|
交流接触器
|
继电器
晃电继电器
|
**继电器
|
微机保护器
|
电力调整器
|
油流继电器
|
密封继电器
|
计时器
|
光电继电器
|
电子继电器
|
气体继电器
|
极化继电器
|
平衡继电器
|
阻抗继电器
|
零序方向继电器
|
电码继电器
|
周波继电器
|
频率继电器
|
电流相位继电器
|
断相闭锁继电器
|
压力继电器
|
温度继电器
|
双位置继电器
|
接地继电器
|
逆功率继电器
|
差动继电器
|
矿用继电器
|
重合闸继电器
|
低周率继电器
|
监视继电器
|
同步检查继电器
|
功率继电器
|
冲击继电器
|
消声无声节电器
|
气压自动开关
|
直流继电器
|
过流继电器
|
信号继电器
|
漏电继电器
|
继电器座
|
电动机保护器
|
固态继电器
|
电压继电器
|
电流继电器
|
速度继电器
|
中间继电器
|
累时器
|
热过载继电器
|
时控光控开关
|
液位继电器
|
闪烁继电器
|
计数继电器
|
相序继电器
|
正反转控制器
|
时间继电器
|
专攻二用专用继电器
|
大功率继电器
|
工业控制继电器
|
小型电磁继电器
|
船用仪器仪表
工程机械仪表
船用电表
船钟
|
船用电压表
|
船用温度表
|
船用功率表
|
船用频率表
|
交流绝缘电网监测仪
|
船用高阻表
|
船用舵角表
|
船用计时器
|
船用电流表
|
船用同期表
|
船用温度仪表
舰用温度控制器
|
船用耐震压力温度计
|
船用双金属温度计
|
船用压力仪表
船用压力传感器
|
压力表组合板
|
船用压力表
|
船用液位控制器
船用浮筒式液位计
|
高温高压磁浮子液位计
|
船用浮球液位控制器
|
浪涌保护器
其它类浪涌保护器
等电位连接器
|
信号类浪涌保护器
其它信号类浪涌保护器
|
工控控制线路类浪涌保护器
|
无线信号类浪涌保护器
|
通信信号类浪涌保护器
|
广播电视线路类
|
视频监控线路类浪涌保护器
|
网络线路类浪涌保护器
|
电源类浪涌保护器
电源防雷箱
|
三级-电源电涌保护器
|
二级-电源电涌保护器
|
**-电源电涌保护器
|
液压气动
滑块线轨
HSZ重型直线导轨
|
HS轻型直线导轨
|
SZ微型直线导轨
|
电磁离合器
干式电磁离合器
|
湿式电磁离合器
|
电磁铁
制动器
|
牵引电磁铁
|
退磁器
|
电磁换向阀
板式换热器
|
湿式电磁换向阀
|
气缸
车辆用液压缸
|
薄型液压缸
|
电磁阀电控阀
过滤器
|
膨胀阀
|
电磁阀
|
电磁阀线圈
|
三联件
|
二位五通电磁阀
|
二位三通电磁阀
|
二位二通电磁阀
|
控制器
遥控器
工业遥控器
|
起重机控制台
起重机联动台
|
主令控制器
LK5G主令控制器
|
LK22主令控制器
|
XKB主令控制器
|
LK18主令控制器
|
LK17主令控制器
|
DKL16主令控制器
|
LK16主令控制器
|
LK15主令控制器
|
LK14主令控制器
|
LK5主令控制器
|
LK4主令控制器
|
LK1主令控制器
|
凸轮控制器
JK16凸轮控制器
|
KTJ17凸轮控制器
|
KTJ15C凸轮控制器
|
KTJ15B凸轮控制器
|
KTJ15A凸轮控制器
|
KTJ15L凸轮控制器
|
KTJ15凸轮控制器
|
KTJ6凸轮控制器
|
KTJ5凸轮控制器
|
KTJ1凸轮控制器
|
KT14凸轮控制器
|
KT12凸轮控制器
|
KT10凸轮控制器
|
电机驱动
轴承
编码器
电机
小型电机
|
风机
管道风机
|
轴流风机
|
可编程逻辑控制器PLC
转差离合器控制装置
转差离合器控制器
|
电机调速器
给料机控制器
|
交流电机调速控制器
|
直流电机调速控制器
|
力矩电机控制器
|
电磁调速电机控制器
|
变频器
高压变频节电器
|
简易型变频器
|
通用型变频器
|
电力电子
模块
滤波器
分流器
**栅
胶带
电工胶带
|
报警设备
打铃仪
|
警示灯
|
电笛
|
电铃
|
插头插座
航空插头
|
插头
|
排插板
|
整流器
整流器模块
|
散热器
|
刹车整流器
|
端子
导轨
|
接线端子
|
电容器
电力电容
|
补偿控制器
低压无功就地补偿装置
|
无功补偿控制器
|
接线盒连接片
连接片
|
熔断器
温度保险丝
|
载熔件(熔断器手柄)
|
报警熔断器
|
熔断器芯
|
熔断器底座
|
电阻
瓷盘电阻
|
板型电阻
|
线绕电阻器
|
电位器
电位器刻度盘与旋钮
|
碳膜电位器
|
多圈线绕电位器
|
单圈线绕电位器
|
开关电器
液位设备
漏水/漏液检测
|
电极保持器/电极
|
无浮标开关
|
按钮开关指示灯
事故按钮
|
行车开关
|
蜂鸣器
|
按钮盒
|
按钮开关信号灯附件
|
指示灯
|
按钮开关
|
主令开关
|
接近光电开关
光幕开关
|
磁性开关
|
霍尔开关
|
光电开关
|
接近开关
|
微动钮子船型开关
辅助开关
|
波段开关
|
船型开关
|
钮子开关
|
微动开关
|
行程限位脚踏开关
超速开关
|
料流检测器
|
阻旋式料位控制器
|
纵向撕裂开关
|
溜槽堵塞检测器
|
多功能行程限制器
|
打滑检测器
|
两级跑偏开关
|
高度限制器
|
拉绳开关
|
脚踏开关
|
限位开关
|
行程开关
|
转换倒顺组合开关
电焊机开关
|
组合开关
|
倒顺开关
|
万能转换开关
|
隔离负荷开关
铁壳开关
|
户外隔离开关
|
负荷隔离开关
|
刀开关
|
电源电器
不间断电源
蓄电池
调压器
电动接触调压器
|
三相调压器
|
单相调压器
|
开关电源
开关电源
|
G3系列开关电源
|
NE系列开关电源
|
逆变器
车载交流逆变电源
|
微电脑智能型正弦波逆变器
|
微电脑智能型方波逆变器
|
高可靠全自动逆变器
|
充电器
汽车充电器
|
快速充电器
|
可控硅充电器
|
微电脑智能充电器
|
双电源
塑壳双电源自动切换开关
|
微断双电源自动切换开关
|
互感器
电抗器
|
电压互感器
|
电流互感器
|
起动器
星三角起动器
|
软起动器
|
电子式起动器
|
手动启动器
|
磁力起动器
|
减压起动器
|
稳压器
UPS不间断电源
|
微电脑无触点稳压器
|
壁挂式全自动交流稳压器
|
高精度全自动单、三相交流稳压器
|
变压器
变阻器
|
低压非晶合金变压器
|
电源变压器
|
自藕变压器
|
三相干式整流变压器
|
电压转换变压器
|
行灯照明变压器
|
整流变压器
|
矿用变压器
|
电力变压器
|
控制变压器
|
新闻中心
首页
>>>
新闻中心
“虚拟发电站”能否取代大规模集中型电力系统?
DQZHAN讯:“虚拟发电站”能否取代大规模集中型电力系统?
欧盟(EU)提出了到2020年使可再生能源比例达到20%的目标,各成员国都在为此而扩大采用可再生能源。尤其是在这方面比较先进的德国和丹麦,随着输出功率变化较大的风力及太阳能发电的增加,正在积**力于由以火力发电为中心的集中型系统向分布型系统转移,以及实现电力需求控制。通过日经BP清洁技术研究所汇总的《新一代社会创造项目总览》,可以清楚地看到欧洲勇于改革以化石资源为前提的能源系统的姿态。
电能50%、热能65%依靠可再生能源的城镇
德国西南部的弗莱堡市人口约为20万。该市以限制汽车进入市区的交通政策而受到人们关注,在采取全球变暖对策方面也不遗余力。提出了通过节能和采用可再生能源,在2030年之前,使二氧化碳排放量较1992年减少40%的目标。
作为环境政策示范地区,该市于1997年开始,对位于该市南端、面积38公顷的Vauban区域进行了再开发。该区把额定输出功率为5000千瓦(2500千瓦×2座)的热电联产系统作为能源系统的核心。
在连接热电联产设施与住宅的地下,铺设了输电线和运送温水的管道,总长达12公里。2012年,这里共生产并供应了1400万千瓦时的电能和640万千瓦时的热能。热能全部加以利用,短缺的电能利用其他区域电力公司的电力系统网供电予以弥补。热电联产一年的综合热效率约为80%。
热电联产的燃料是木质片材和天然气,2012年木质片材的利用量达到1.5万立方米。在Vauban区域内,通过燃烧生物质、在建筑屋顶设置太阳热系统等,所需热能的约65%由可再生能源满足。
在电能方面,通过生物质发电和太阳能发电,约50%的电能来源于可再生能源。木质片材使用的是弗莱堡以东森林地区(黑森林)的林业产生的疏伐材等。
Vauban地区深受欢迎,截至2013年5月,该地区人口已经超过*初计划,达到了5500人(2300户)。其中4成是有小孩的家庭。按照预定,新公寓建成后,人口将增加到约6000人。
“可再生能源比例超过30%”或将实现
在Vauban地区,可再生能源在电能和热能中所占的比例已经超过50%,率先步入了德国乃至欧洲力争实现的未来社会。欧盟提出的目标“到2020年使可再生能源占20%”是以一次能源作为分母,也包括了汽车燃料。但是,鉴于汽车脱离化石燃料还有相当长的路要走,要想达成“20%”的目标,就需要把电能与热能中可再生能源的比例提高到30~40%,以抵消汽车使用的化石燃料。德国政府之所以提出到2020年,把电能中可再生能源所占的比例从现在的约20%提高到35%的目标,原因正在于此。
其实,欧洲已经有了像瑞典韦克舍(人口7万)这样,全市供电几乎100%依靠可再生能源的城市。与Vauban一样,韦克舍也使用以木质片材为燃料的热电联产设备,向住宅和设施供应电能与热能。因为生物质发电比较容易按照电力需求调整发电量,所以能够在维持电能质量的同时,提高可再生能源的比例。
但是,今后有望大幅增加的风力和太阳能设备很难按照需求进行发电,受天气的影响输出功率变化较大。要想使电网中的电流频率保持一定,就需要在瞬间使电力需求与供应达到一致。
吸收风力与太阳能的输出功率变化,通常是通过利用能在短时间内调节输出功率的天然气火力发电,或是控制水力发电的输出功率。
但这样的调节电源容量有限,有看法认为,如果并网的风力与太阳能所发电力接近30%,电能质量将会出现问题。在欧洲,可再生能源比例已出现超过30%的苗头,届时应如何维持电能质量的问题已浮出水面。
如果增设天然气火力发电,或设置电力系统使用的大型蓄电池,虽然可以吸收风力和太阳能的输出功率变化,但需要耗费巨大的成本。因此,欧洲目前的研发热点,是低成本储能(蓄能设备)技术,和配合可再生能源输出功率控制用电方需求的技术。
在丹麦的洛兰岛(Lolland),利用氢气储存风力发电电能的实证项目已经开始实施。其机制是,当风力发电量大,供电量超出需求时,就用剩余的电能电解水,制备成氢气储存在储罐中;在没有风的日子等无法发电时,再使用事先储存的氢气,利用燃料电池进行发电,充分利用电能与废热。
这个项目的实施地点是韦斯滕斯考(Vestenskov),位于洛兰岛*大的城镇纳克斯考(Nakskov)以南5公里处。在当地远离住宅区的海岸附近的空地上,设置了电解水制备氢气的装置,以及压缩氢气进行储存的储罐。
氢气通过导管输送至住宅,利用家用燃料电池热电联产系统发电,供应电能与热能。从2011年开始,已有35栋住宅设置了功率为1.5千瓦的固体高分子型燃料电池(PEFC)。
**阶段的实证实验将于2013年年底开始实施,计划在约1万栋住宅中设置内置小型制氢装置(水电解装置)的燃料电池系统。如此一来,就可以节省设置氢气输送导管的成本。还可利用制备氢气时产生的废热加热温水存储在住宅内的储罐中以供使用。并且还计划将制备的氢气用于燃料电池车。与蓄电池相比,储氢系统具有成本更低、可以长期储存的优点。
德国和法国也已经开始实施利用氢储存可再生能源的计划。德国正在柏林郊外进行利用风力所发电力制造氢,再把氢气掺入生物燃气中予以供应的实证实验。法国也从2012年1月开始进行尝试,利用其南部科西嘉岛设置的太阳能发电设施的电力制备氢气并储存,并将其应用于燃料电池。
利用电力市场控制需求
与低成本储能同时进行的实证实验还有电力需求控制。德国“E-Energy”项目的内容之一,就是力争通过使用电方具有灵活性,平衡风电场的输出功率变动。进行了实证的调节用电需求的方法有两个,一个是把650处住宅和工厂作为对象,一个是充分利用商用冷冻冷藏仓库、市营泳池等设施的大型压缩机。
以住宅和工厂为对象进行实证的机制是,在根据天气预报预测到风力发电运转率将提高的情况下,通过事先通知,对用电给予奖励,在预测风力发电运转率会降低的情况下,通过事先通知,对用电课以罚金。结果显示,与不进行通知相比,增减分别实现了30%左右的需求调节。
另一方面,使用冷冻冷藏仓库的实证尝试采取的机制是,使风力发电与冷冻冷藏仓库、电力市场联动,在风力发电量大、电能价格便宜的时段,启动压缩机充分冷却库内,当电能单价上涨时则停止买电,关闭压缩机等。结果显示,即使将作为风力和太阳能发电的调节电源的火力发电站等的利用率减少15%,也可以维持地区的供需平衡,同时,冷冻冷藏仓库的运营商还节约了6~8%的电费。
在丹麦的博恩霍姆岛(Bornholm),由欧洲10国加盟的“EcoGrid EU Consortium”也在积极开展实证项目,其内容是利用电力市场更加机动灵活地控制用电需求。
在博恩霍姆岛,供电量的50%以上由可再生能源满足,上述实证项目作为平衡供需变动的方法,创建了“实时电力市场”。验证根据供需情况时刻变动电力价格,活跃电力交易市场,从而以电力市场为基础,确保供需平衡的机制。
由于风力发电量的增减等,市场价格以分钟为单位发生变化,各家庭通过住宅内的智能网关和控制器实时收集价格信息并作出判断,由控制器根据价格自动控制家电运转状态。
蓄电池是*后的手段
日本所进行的智慧城市相关实证项目大都是利用蓄电池使风力和太阳能发电的输出功率变动实现平均化的尝试。对于拥有很多具有实力的蓄电池厂商的日本而言,这样做也是为了创建新的蓄电池市场。但欧美却认为,在可再生能源平均化技术中,“蓄电池是*后的手段”。现在,对实现更低廉的储能以及“需求灵活化”的挑战已经开始。
一般观点认为,在输送风力和太阳能所发的电力时,考虑到在天气不同的地区之间实现输出功率平均化的效果,及可利用多座火力发电站调节输出功率,还是接入规模大的电网在维持电能质量方面更为有利。
但现在有看法指出,这一理论在可再生能源比例约为10%的时候尚可成立,但在接近40%的情况下,倘若把调节太阳能和风力发电输出功率变化的重任直接推给基础电网,会增加电力系统整体崩溃的风险。
因此,欧洲目前正在进行摸索,先利用地区输电网将风力和太阳能的输出功率变动缓和到一定程度,然后再接入基础输电网,建立这样一种输电系统。备受期待的方法就是在短时间内自动控制电力需求,以及利用氢系统等的低成本储能。而且,如果像弗莱堡Vauban地区那样,拥有使用生物质的分布型发电系统,其输出功率调节也可以用来维持地区内的供需平衡。
欧洲已通过政策明确提出了把可再生能源作为基础电源予以扶植的方针。为了大量接纳会有变动的电源,现在,欧洲的电力系统相关企业都在竞相开发“虚拟发电站”,这是一种优化整合分布型电源、储能系统以及需求控制的技术。在今后,“虚拟发电站”能否逐渐取代大规模集中型电力系统?还是作为一种“设想”而告终?在欧洲开展的实证项目所取得的成果将成为决定因素。
上一篇:
智能化、集成化:变电站发展新趋势
下一篇:
温控器品牌格局:国内企业与外企差距逐渐缩小
公司简介
关于我们
企业文化
企业荣誉
人才招聘
订购指南
订购流程
问题答疑
联系客服
货款支付
支付方式
发票开具
常见问题
业务合作
加入供应商
加入会员
市场宣传
联系我们
物流配送
配送方式
配送周期
验货和签收
Copyright@ 2003-2025
上海富继电气有限公司
版权所有
沪ICP备12022913号-5
沪公网安备 31010102004818号