新闻中心

2014十大科技成就与实践汇总:能源和电力领域有重大突破

DQZHAN讯:2014十大科技成就与实践汇总:能源和电力领域有重大突破

年末,小编汇总了《科学美国人》杂志的2014年十大科技成就和十大科技事件,以及《自然》杂志的2014年十大科技事件,其中能源和电力领域在工程应用方面还是有相当大突破的,或者说被人们寄予厚望。

科学美国人——2014年十大科技成就

1、基因精灵

2、可重新编辑的细胞

3、透明的生物

4、唾液燃料电池

5、视觉矫正屏幕

6、原子尺度的乐高积木

7、超硬的可回收塑料

8、用声波进行无线充电

9、用低级废热充电的电池

10、纳米粒子摄像机

科学美国人——2014年十大科技事件

1.埃博拉疫情暴发

2.人类探测器“罗塞塔”**登陆彗星

3.美中达成历史性气候协议

4.“宇宙大爆炸”引力波证据真伪成疑

5.加州遭遇千年一遇的干旱

6. 大灾难让“商业太空飞行”蒙羞

7. 美国实验室致命微生物失控

8.**成功合成酵母染色体

9.黑客攻击带来的变革

10.贝壳雕刻化石改写人类发展史

自然——2014年十大科技事件

1、太空竞赛

2、来自彗星的呼唤

3、解码人类起源

4、埃博拉大杀四方

5、小尘埃**烦

6、艾滋病**希望再一次破灭

7、大脑研究摩拳擦掌

8、140年来*热的2014年

9、干细胞的闹剧

10、恐怖的发现

可以看到科技事件中生物、医学、太空、气候、考古等是*主要的科技事件,没能源和电力什么事,而科技成就中能源和电力占了4席,分别是唾液燃料电池、原子尺度的乐高积木、用声波进行无线充电、用低级废热充电的电池,说明能源和电力领域在工程应用方面还是有相当大突破的,或者说被人们寄予厚望的。

以下列出能源电力相关的科技成就:

唾液燃料电池

——唾液可能成为医疗设备的可再生能源来源

阿拉伯国王科技大学电子工程学教授穆罕默德˙穆塔法˙侯赛因,为制造超微装置贡献了几乎他所有的时间。2010年,他着手开发一个丰富的可再生能源电源,可用于从极远的地方净化水或诊断**的机器,他不可避免地从“小”入手。比如说,微小的微生物燃料电池可能是个自然的起点。但用唾液为燃料电池供能却并非自然而然的选择。

这个利用唾液的点子来自侯赛因的同事贾斯汀E˙闵科,当时是他办公室的博士候选人。那时候,闵科正在尝试制造一种血糖监测设备,它需要电源足够小,能到达糖尿病患者体内胰腺附近。微生物燃料电池通过给**喂食有机物(唾液中含有很多)来产生电荷进而变成电能的,这个方案自然成为闵科研究项目的备选。

他们两个人用了一种高超导电极,装满了吃唾液的**,在几个星期之内他们就产生了近一个微瓦特(百万分之一瓦特)的电。

1微瓦是非常非常小的电量,但是足够为实验室芯片、糖尿病工具和血糖监测工具供电了。侯赛因正在与能3D打印人造器官的公司合作,将他的燃料电池植入到人造肝脏中去,那里也有大量的体液可提供燃料。他说,这只是长期规划的简单起步,他的目标是在贫穷国家用发电厂有机废物生产供海水淡化装置使用的电能。

原子尺度的乐高积木

——堆叠1个原子厚的材料能创造出全新属性物质,开创无限可能

 

这个想法*初受到乐高积木的启发,乐高是用一种小型的块状积木对齐在一起。那些积木块已经变成了不可思议的汽车、精心打造的城堡和许多其他作品,相比较积木块本身,这些作品更具魅力。

今天,科学家用一种新型乐高——原子尺度的“积木块”生产新型的材料。这些新的结构元素是一片一片的材料,可以薄到仅有一个原子的厚度,还能按照设计过的**序列一个一个往上堆叠。这种****的结构控制能生产出带有电学和光学性质的物质,这在此前是没法实现的。它的出现,让科学家可以想象出用非常微弱的导电材料制成的装置,比如更快更强劲的电子计算机,可弯曲、折叠且超轻快的可穿戴电子设备。

这个技术突破是2010年诺贝尔物理学奖获得者、英国曼彻斯特大学物理学家安德瑞K˙金的石墨烯相关研究的延续。2004年,他和同事从笨重的石墨块中分离出了单张六面体结构的石墨烯层,此后十年间,很多学者用这种办法分离出很多种类型的大块晶体结构,云母就是一个例子,其外来名字为六角氮化硼和二硫化钼材料。

这些晶体层被认为是二维的,因为一个单原子是所有材料所能达到的*小厚度了。其他维度、宽度、长度可以更大一些,这取决于制作者的愿望。

在过去的几年中,二维晶体因为能够展现很多独特的性质,已经成为材料科学和固体物理学领域的热门话题。

我们可以把这些材料层堆叠的很稳固,它们不是以传统的方式结合在一起,而是用共享电子的共价键。但是原子在互相很靠近的时候,这些原子由于众所周知的范德华弱拉力的作用,又结合在了一起。这个力通常不足以将原子和分子控制住,但是因为二维层原子如此密集和靠近,因此累积起来的力量变得很强大。

这类材料工程提供了诱人的可能性,想象一下室温超导体。输电没有能量损失一直是科学家的目标。如果能做到这一点的材料被找到,将对我们人类文明产生深远的影响。有一个共识是,原则上可以达到这个目标,但是没人知道如何达到。今天,材料可以具有超导性能的*高温度是零下100摄氏度,在过去二十年之前这个极限并没有被突破。

科学家*近已经知道,一些超导体是由至少一个氧原子和其他元素组成的氧化物,且能按照前面的方法被拆解成单层。如果重新组装并在二者之间插入其他晶体层会怎样?氧化物的超导性取决于内层的分离,插入的附加层可能会将弱导电层甚至绝缘材料转换成超导体。

这个主意还没有被完全验证,主要在于原子尺度的乐高材料技术还处在起步阶段。实际上,要组装复杂的多层结构是很困难的。到现在为止,超过五个不同的材料层就很难维持住了,通常只能用两个或三个不同的乐高积木块,主要是石墨烯结合二维氮化硼绝缘晶体和二硫化钼和钨二硒醚等半导体材料。因为堆叠有很多材料,它们通常被称为“异质结构”。它们很小,通常只有10微米的宽度和长度,比一个人类头发的横断面还要小。

用这种堆叠方式,科学家可以对新型电子属性、光学属性以及新的应用开展实验。一个引人入胜的方面是,这些材料层越薄,就越有弹性且透明。这就为发展光纤传输设备带来希望,比如屏幕可以折叠起来用,也可以展开来用等。计算机芯片使用电源更加高效也成为可能。

如果研究人员在这些结构有重大发现,可以坚信这项技术可以扩到到工业化生产。现在石墨烯和其他二维晶体材料已经量产了,现在这种微晶体薄层材料可以被制成几百平方米了。

虽然还没有“杀手锏”级别的突破,但是这一领域的进展引起了科学界的强烈讨论和浓厚兴趣。人类的进步几乎都是跟随着新材料发现的脚步。从石头到铜到铁到硅时代,这样的探索每次都起到了至关重要的作用。纳米尺度的乐高正扮演着****的角色,现在看来,仍有无穷无尽的可能。

用声波进行无线充电

——通过空气发射电流的有效方法

2011年,还在宾夕法尼亚大学读古生物学的学生梅雷迪斯˙佩里正在为笔记本充电,突然想到,繁琐的电源线有**可能会过时。她开始寻找让这个想法变成现实的路径。佩里知道,基于磁共振和感应器的无线变电器已经存在,但它们的应用范围很有限,瓶颈是“平方反比定律”,就是电磁辐射的强度与距离辐射源的距离成反比。

然而,机械震荡不会面临这个难题。利用空气的振动使用压电传感器,将机械能转换成电能,似乎是个更好的主意。声音无非就是振动空气粒子,它在理论上应该能够传递能量。超声更是一种**、安静的高能量,也将是**的选择。

当佩里跟学校里的教授讨论这个想法时,很多人告诉她这不太可能实现,因为不可能从超声中提取足够的能量来为电子设备充电,如果她执意如此会遭遇大量电子工程和声学难题。

“但是我知道这个神话是正确的。”她说,“而且没有人给我提供‘完全没有可能’的证据。”所以佩里找到一家叫做“u射线”的公司,来开发这个技术。该公司的发射器作为扬声器目前还处在原型研究阶段。它创建一个热点聚焦超声的能量;同时将一个接收器附加到电子装置上用来接收回声并将其转换成电力能源。她现在正努力让**批产品在两年内上市。

佩里说,一个通用的无线充电系统,将取消大量不兼容的电线和充电器,并允许移动设备来执行高能耗任务而无需消耗电池。做为工业品内部设计的重要组成部分,无线充电设计方案还可以带来新的选择,比如为飞机、汽车、航天器或任何其他交通工具减少重量,它们如今还是满载各种沉重的电源线。

“总之,无线充电将让我们从与物理世界的互动中解脱出来,我们将从彻底逃离拴在墙上的那些缰绳。”佩里说。

用低级废热充电的电池

——美国三分之一废弃能源能用来发电

每年,从工厂中产生的10亿瓦特潜在电能被挥霍掉了,这些电能足够1000万户家庭使用。热电效应就是通过温度差异将热量转移到电力的一种方式,但只转换了其中一部分。几十年来,温度差异达到了500摄氏度或者更高,以便获取任何有用的大量能源,麻省理工学院的博士后杨远(音译)解释说,这很不幸,因为环境保护组织估计,每年美国的100摄氏度以下热能损失达到了三分之一。

杨和他的导师及斯坦福的几个博士后已经开发出一个在50摄氏度获取热能的方法,诀窍是利用热电效应的一个“表亲”——热电温差效应(thermogalvaniceffect)。电池在不同温度和电压的某种转换关系下,可以有效地充电。科学家们建立了一个系统装置,首先利用废热提高蓄电池的温度,由于热电温差效应,电池可以在较低的电压下充电。然后让电池冷却,在较低的温度时使得电池可以在较高的电压下放电进入电网。这样能量差可以有效地从废热中采集。

仅仅在过去两年左右,电池电极就变得能有效转换低温差电能了,杨说,在成功商业化之前还有很多事需要做。但现在,大量的电池可以绕在工厂烟囱或发电设备周围,用于转换低级别多余热能。“这个相当有吸引力,毕竟低级热能到处都是。”杨说。

沪公网安备 31010102004818号