欢迎光临上海富继电气有限公司!
主营产品:
小型继电器,凸轮控制器,接近开关,磁力起动器,电机调速器,万能转换开关,电源电涌保护器,船用浮球液位控制器,静态中间继电器,拉绳开关
首页
关于我们
下载中心
品牌专区
技术文章
新闻中心
联系我们
配线器材
高压电器
船用电器灯具
环保仪器仪表
工控元件
船用仪器仪表
浪涌保护器
汇款信息
品牌专区
产品目录
配线器材
绝缘子
铜接头
线卡
钢钉线卡
|
尼龙扎带
不锈钢扎带
|
普通尼龙扎带
|
缠绕管
高压电器
消谐器
高压熔断器
避雷器
|
高压电器配件
高压带电显示器
|
电磁锁
|
加热器
|
高压柜内照明灯
|
船用电器灯具
船用灯具
船用防爆灯
|
船用灯具电器配件
|
船用手提灯
|
机床工作灯
|
船用投光灯
|
船用白炽灯
|
船用荧光灯
|
航行信号灯
|
船用电器
船用伺服机构
|
船用减震器
|
船用填料函
|
船用控制箱
|
船用断路器
|
船用继电器
|
船用变压器
|
船用通用机械
|
船用无线电及附件
|
船用音响信号
|
船用限位开关
|
船用控制按钮开关
|
船用接插件
|
环保仪器仪表
压力控制器
电动执行器
消歇器
温度传感器
差压开关
变送器
信号隔离器
|
电量变送器
|
压力变送器
|
温度变送器
|
电表
指针式电表
|
数显电表
|
电能表
|
导航普航仪器
传话器和传话管路
|
测深锤
|
量角尺
|
平行尺
|
铜雾钟
|
罗经放大镜
|
船用倾斜仪
|
电笛
|
气笛
|
磁罗经
|
万用表
超高阻仪器
|
电雷管测试仪
|
电阻测量仪
|
电桥
|
兆欧表
|
数字式万用表
|
压力表
远传压力表
|
温度控制仪
指针式温控器
|
蒸馏器
|
数字温控仪
|
木材水分仪
木材水份监测仪
|
减压器
医用减压器
|
船用减压器
|
气瓶减压器
|
氨气减压器
|
工控元件
断路器
电动机断路器
|
模数化插座
|
配电箱
|
家用断路器
|
真空断路器
|
断路器附件
|
磁场断路器
|
直流快速断路器
|
万能断路器
|
漏电断路器
|
塑壳断路器
|
微型断路器
|
接触器
船用接触器
|
真空接触器
|
固态接触器
|
接触器附件
|
可逆接触器
|
切换电容接触器
|
直流接触器
|
交流接触器
|
继电器
晃电继电器
|
**继电器
|
微机保护器
|
电力调整器
|
油流继电器
|
密封继电器
|
计时器
|
光电继电器
|
电子继电器
|
气体继电器
|
极化继电器
|
平衡继电器
|
阻抗继电器
|
零序方向继电器
|
电码继电器
|
周波继电器
|
频率继电器
|
电流相位继电器
|
断相闭锁继电器
|
压力继电器
|
温度继电器
|
双位置继电器
|
接地继电器
|
逆功率继电器
|
差动继电器
|
矿用继电器
|
重合闸继电器
|
低周率继电器
|
监视继电器
|
同步检查继电器
|
功率继电器
|
冲击继电器
|
消声无声节电器
|
气压自动开关
|
直流继电器
|
过流继电器
|
信号继电器
|
漏电继电器
|
继电器座
|
电动机保护器
|
固态继电器
|
电压继电器
|
电流继电器
|
速度继电器
|
中间继电器
|
累时器
|
热过载继电器
|
时控光控开关
|
液位继电器
|
闪烁继电器
|
计数继电器
|
相序继电器
|
正反转控制器
|
时间继电器
|
专攻二用专用继电器
|
大功率继电器
|
工业控制继电器
|
小型电磁继电器
|
船用仪器仪表
工程机械仪表
船用电表
船钟
|
船用电压表
|
船用温度表
|
船用功率表
|
船用频率表
|
交流绝缘电网监测仪
|
船用高阻表
|
船用舵角表
|
船用计时器
|
船用电流表
|
船用同期表
|
船用温度仪表
舰用温度控制器
|
船用耐震压力温度计
|
船用双金属温度计
|
船用压力仪表
船用压力传感器
|
压力表组合板
|
船用压力表
|
船用液位控制器
船用浮筒式液位计
|
高温高压磁浮子液位计
|
船用浮球液位控制器
|
浪涌保护器
其它类浪涌保护器
等电位连接器
|
信号类浪涌保护器
其它信号类浪涌保护器
|
工控控制线路类浪涌保护器
|
无线信号类浪涌保护器
|
通信信号类浪涌保护器
|
广播电视线路类
|
视频监控线路类浪涌保护器
|
网络线路类浪涌保护器
|
电源类浪涌保护器
电源防雷箱
|
三级-电源电涌保护器
|
二级-电源电涌保护器
|
**-电源电涌保护器
|
液压气动
滑块线轨
HSZ重型直线导轨
|
HS轻型直线导轨
|
SZ微型直线导轨
|
电磁离合器
干式电磁离合器
|
湿式电磁离合器
|
电磁铁
制动器
|
牵引电磁铁
|
退磁器
|
电磁换向阀
板式换热器
|
湿式电磁换向阀
|
气缸
车辆用液压缸
|
薄型液压缸
|
电磁阀电控阀
过滤器
|
膨胀阀
|
电磁阀
|
电磁阀线圈
|
三联件
|
二位五通电磁阀
|
二位三通电磁阀
|
二位二通电磁阀
|
控制器
遥控器
工业遥控器
|
起重机控制台
起重机联动台
|
主令控制器
LK5G主令控制器
|
LK22主令控制器
|
XKB主令控制器
|
LK18主令控制器
|
LK17主令控制器
|
DKL16主令控制器
|
LK16主令控制器
|
LK15主令控制器
|
LK14主令控制器
|
LK5主令控制器
|
LK4主令控制器
|
LK1主令控制器
|
凸轮控制器
JK16凸轮控制器
|
KTJ17凸轮控制器
|
KTJ15C凸轮控制器
|
KTJ15B凸轮控制器
|
KTJ15A凸轮控制器
|
KTJ15L凸轮控制器
|
KTJ15凸轮控制器
|
KTJ6凸轮控制器
|
KTJ5凸轮控制器
|
KTJ1凸轮控制器
|
KT14凸轮控制器
|
KT12凸轮控制器
|
KT10凸轮控制器
|
电机驱动
轴承
编码器
电机
小型电机
|
风机
管道风机
|
轴流风机
|
可编程逻辑控制器PLC
转差离合器控制装置
转差离合器控制器
|
电机调速器
给料机控制器
|
交流电机调速控制器
|
直流电机调速控制器
|
力矩电机控制器
|
电磁调速电机控制器
|
变频器
高压变频节电器
|
简易型变频器
|
通用型变频器
|
电力电子
模块
滤波器
分流器
**栅
胶带
电工胶带
|
报警设备
打铃仪
|
警示灯
|
电笛
|
电铃
|
插头插座
航空插头
|
插头
|
排插板
|
整流器
整流器模块
|
散热器
|
刹车整流器
|
端子
导轨
|
接线端子
|
电容器
电力电容
|
补偿控制器
低压无功就地补偿装置
|
无功补偿控制器
|
接线盒连接片
连接片
|
熔断器
温度保险丝
|
载熔件(熔断器手柄)
|
报警熔断器
|
熔断器芯
|
熔断器底座
|
电阻
瓷盘电阻
|
板型电阻
|
线绕电阻器
|
电位器
电位器刻度盘与旋钮
|
碳膜电位器
|
多圈线绕电位器
|
单圈线绕电位器
|
开关电器
液位设备
漏水/漏液检测
|
电极保持器/电极
|
无浮标开关
|
按钮开关指示灯
事故按钮
|
行车开关
|
蜂鸣器
|
按钮盒
|
按钮开关信号灯附件
|
指示灯
|
按钮开关
|
主令开关
|
接近光电开关
光幕开关
|
磁性开关
|
霍尔开关
|
光电开关
|
接近开关
|
微动钮子船型开关
辅助开关
|
波段开关
|
船型开关
|
钮子开关
|
微动开关
|
行程限位脚踏开关
超速开关
|
料流检测器
|
阻旋式料位控制器
|
纵向撕裂开关
|
溜槽堵塞检测器
|
多功能行程限制器
|
打滑检测器
|
两级跑偏开关
|
高度限制器
|
拉绳开关
|
脚踏开关
|
限位开关
|
行程开关
|
转换倒顺组合开关
电焊机开关
|
组合开关
|
倒顺开关
|
万能转换开关
|
隔离负荷开关
铁壳开关
|
户外隔离开关
|
负荷隔离开关
|
刀开关
|
电源电器
不间断电源
蓄电池
调压器
电动接触调压器
|
三相调压器
|
单相调压器
|
开关电源
开关电源
|
G3系列开关电源
|
NE系列开关电源
|
逆变器
车载交流逆变电源
|
微电脑智能型正弦波逆变器
|
微电脑智能型方波逆变器
|
高可靠全自动逆变器
|
充电器
汽车充电器
|
快速充电器
|
可控硅充电器
|
微电脑智能充电器
|
双电源
塑壳双电源自动切换开关
|
微断双电源自动切换开关
|
互感器
电抗器
|
电压互感器
|
电流互感器
|
起动器
星三角起动器
|
软起动器
|
电子式起动器
|
手动启动器
|
磁力起动器
|
减压起动器
|
稳压器
UPS不间断电源
|
微电脑无触点稳压器
|
壁挂式全自动交流稳压器
|
高精度全自动单、三相交流稳压器
|
变压器
变阻器
|
低压非晶合金变压器
|
电源变压器
|
自藕变压器
|
三相干式整流变压器
|
电压转换变压器
|
行灯照明变压器
|
整流变压器
|
矿用变压器
|
电力变压器
|
控制变压器
|
新闻中心
首页
>>>
新闻中心
无线输电到底靠不靠谱?
DQZHAN讯:无线输电到底靠不靠谱?
无线充电技术在电动牙刷、剃须刀、手机上已经有了一些应用,电动汽车无线充电也有了初步的试验。如果无线充电可以实现,那么我们是不是可以省去高压输电线路实现无线输电,甚至还可以接收太空太阳能电池发来的电能,彻底解决人类输电和用能问题呢?今天小编尝试说说无线输电靠不靠谱。
无线输能在破解无线输电的问题前,让我们先把无线输电的范围拓展一下吧——“无线输能”。能量的概念包含更广,太阳光就是*常见的“无线输能”,那可是跨越1.5亿公里、长达45亿年的无线输能。首先来看看有什么能量形式,再看他们能不能“无线”传输。世界上的能量形式我们早已熟知,高中物理就学了四种:力、热、光、电。再加核能和化学能,大概就这六种能源形式(其中的力是指机械能,电是指电磁能)。核能和化学能所来源的原子力和化学键力是不可能远距离传输的,所以我们只考虑机械能、热能、光能和电磁能四种能量传输。先说有线传输对应的四种常用方式:机械能的传输对应刚性杆传输,钢杆是机械能的载体,例子如汽车的传动轴;光能传输对应光纤,光纤是光的载体;热能对应热的良导体,比如各种金属;电磁能对应导线或铁芯,都是电或磁的良导体。有线传输的特点就是,这个通道的阻力很低:钢杆对机械能无损失,光纤对光能损失小,良导体的热阻小,导线的电阻小,铁芯的磁阻小。这样我们才能在远端收获到损失较小的能量。
哪些能量可以无线传输无线传输就没有这些“低阻通道”了,只有空气,或者什么都没有的真空。四种能量在空气或者真空中传播的效果如何呢?首先是机械能和热能,二者必须有介质才能传播,真空无法传播,而空气中两种能量都会向四周弥散,导致传播效果不佳。光能传播不需要介质,人类可以利用激光进行大功率的光能传输,激光甚至可以做成激光炮。但激光对地形和天气要求高,光只能走直线,并且不能被空气中的颗粒漫反射,否则损耗太大。即便可以传输,在发射和接受两端,由电变光和由光变电的效率都较低,成本却很高。也许未来只有太空能量通过激光传输到地面有一定可行性。剩下只有电能了,我们平时接触到的电能只有50或60赫兹,是非常低的频率,电磁波的波长达五六千公里,这么长的波长对一般输电距离而言是没有电磁波特性的(地球的赤道约四万公里),因而电磁感应是电能传输的主要方式。我们现在应用的无线充电技术,以及实验室内的无线输电技术,都是利用电磁感应原理。附录一解释了电磁感应和电磁波二者区别。
无线输能的要义既然空气或真空对能量传输是一条“高阻通道”,想要能量顺利传输过去,不因“高阻”而四散弥漫,只有一个方法——谐振!激光是一种谐振的光源,收音机靠谐振接收信号,同样电能传输也需要谐振的帮助。谐振的详情请见问下的附录二,详细阐述了谐振的概念,以及各种能源的谐振实例。
电能的无线传输我们需要建立谐振频率是50Hz的一条回路,这样就能把电能传输过去了。话虽如此,但实现起来并不好办。现实的环境太复杂了,电场和磁场会在空中遇到各种各样的障碍物,遇到建筑的铁或者钢,电磁场就会被吸收,专业术语叫“屏蔽”(类似于把手机放在一个封闭铁盒里就没信号一样,所有信号都被铁盒吸收了)。我们设计回路参数时,想充分考虑沿路所有钢铁所构成的电容电感,实在太困难了。(电容和电感是电学中*常见但也是*难理解的概念,有机会小编会写一期介绍电容和电感的物理本质是什么)目前也有无线输电的应用案例,比如无线充电的牙刷、手机、汽车,这些案例中的一个共性就是距离短。牙刷和手机都安放在充电座上,无线充电汽车的底盘与地面贴的也非常近(30cm以内)。距离近的目的只有一个,减少周围环境的杂散电容电感的影响,以便我们设计的回路能够*大限度的传输能量。当然,从另一个角度说,这也是为了提高能量的传输效率。距离越长,杂散的电容电感越多,他们吸收的能量也就越多,能传到目的地的能量就越少,能量传输效率也就很低了。所以从杂散参数影响的角度来说,完成长距离的无线输电是件几乎不可能的事,因为杂散参数和各种屏蔽的影响几乎无法去除。
电磁波的方式无线输电是否可行?既然电磁感应的方式并不乐观,那电磁波的方式是否可以?有人也提出了微波无线输电。电磁感应与电磁波的区别只在于频率,或者说波长与传输距离的比例。波长比传输距离长,则是电磁感应原理,否则就是电磁波的传输原理。电磁波的传播方式同广播信号是一样的,是四散弥漫的,只要是弥漫,就缺乏效率。广播电视信号是可以弥漫空间的,但因为传输的只是信号,能量很低,效率低就低了;但如果大功率的电能弥漫空间,不仅仅要求有很大的功率发射和接收装置,而且空间中弥漫着大功率的电磁波,人们会觉得像是生活在微波炉中。目前,输电线路周围的电磁环境问题已经引起了人们的质疑,不知道如果有看不见的大功率电磁波包围着你,你会作何感想。
综上所述,小编对未来长距离输电抱以谨慎的悲观态度。
附录一:电磁波与电磁感应电磁波与电磁感应的区分只在于波长与传播距离的关系。如果波长远远短于传播距离,则发射端周围先有变化的磁场(或电场),接着向外延伸感应出变化的电场(或磁场),再向外延伸……从接收端看,就是交变的电磁场向这边蔓延过来,体现“波”的性质。如果接收端距离发射端很近,远小于波长,则发射端电场和磁场的一点点变化都会迅速传导到接收端,也引起同样的变化。从接收端看就没有波的性质,只有感应。附录二:谐振与电磁感应变化的电场产生磁场,变化的磁场产生电场,即电磁感应。在说电磁感应谐振前,我们先举一个例子,在推小孩荡秋千的时候,如何能使秋千越荡越高呢?肯定是随着秋千摆到*高点后,正在下落的时候推上一把,而且每次都要同一个时间才行。这个时间间隔是有公式直接能算出来的,即单摆公式:时间=2π乘以根号下(摆绳长度L除以重力加速度g),由伽利略发现。T=2π×√(L/g)T只与摆绳长度有关,是个常数。也就是说,不管什么人坐秋千以及秋千摆多高,一个来回的时间都是固定的。这个原理也是钟摆的原理,不管钟摆长什么样、摆多高,摆一个来回就是1秒钟。
推的人必须按照这个时间间隔出手才能让秋千越荡越高。频率与时间互为倒数,换句话说,人只有以这个频率发力,他的力道才能*完全的传递到秋千上。这个频率就可以叫秋千的固有频率。固有频率也叫共振频率或谐振频率,振动是一种往复运动;共振就是一起振动,谐振就是一块“和谐”的振动,都是其他东西和这个物体的固有频率一致了,两个一起振动。所以三个词通用,只是根据习惯和历史用在不同领域。
在力学里这个频率应用广泛,我们听过士兵齐步走时,大桥垮塌的例子,这就是士兵走步的频率与大桥的共振频率一致,踏步的力量*大限度的传给了大桥,大桥接受的力量(能量)越来越大(跟秋千越摆越高一个道理),*后垮塌了。美国也有微风吹大桥*后垮塌的例子,也是微风的频率等于桥的共振频率。建筑师们设计楼房的时候也要考虑如何不让房屋的共振频率等于地震波的频率。光学里的谐振频率也是固有频率。例如光学谐振腔就是激光发射器的必要组成部分,光在这个腔中发生谐振,汇聚的能量越来越大,*后成了高能量的激光。不管是力学还是光学,固有频率都有一个特征:在这个频率下做功,整个过程的损耗*小,传递的能量*多。在电学里同样也叫谐振频率。在这个频率下,整个回路中的电阻*小,传输的能量*大。谐振频率是由传输回路的电感和电容决定的:f=1/(2×π×√LC),或者T=2π×√LC是不是跟上面的单摆公式很像,都是2π乘以一个根号下的什么东西。频率f是谐振周期T的倒数。L是电感,C是电容。我们小时候制作收音机,里面都有两个半圆的金属片,扭动旋钮,两个金属片相对的位置会改变,面积改变会改变电容值C,进而谐振频率会改变。我们平时广播中听到的调频98.5兆赫或者中波792千赫,就是指的谐振频率的大小。空气中本来就弥漫着各种电波,当我们调收音机到某一谐振频率时,这个频率的能量传输路径上的损耗*小,传输的能量*大,所以我们就收听到这个电台了。稍微再旋转下按钮,这个太会慢慢变得不清晰,就是因为收音机的谐振频率变了,传输路径阻力大了,传过来的能量没那么大了。(这里有个通用的概念,叫品质因数,描述在谐振频率下传输能量与非谐振频率下传输能量的比值的。概念来源于广播,我们在某个电波频率下听节目很清楚,稍微动一下旋钮就不清楚了,说明这个频率下能量传输的效果非常好,听得清楚,“品质”就高。)利用电磁感应原理传输电能也是如此,我们需要建立一条可以在50Hz发生谐振的电路,以便让电能*大限度的被接收。
上一篇:
旅游业:又一个被互联网颠覆的行业
下一篇:
万达电商O2O野心:造"一卡通"吃遍线上线下
公司简介
关于我们
企业文化
企业荣誉
人才招聘
订购指南
订购流程
问题答疑
联系客服
货款支付
支付方式
发票开具
常见问题
业务合作
加入供应商
加入会员
市场宣传
联系我们
物流配送
配送方式
配送周期
验货和签收
Copyright@ 2003-2025
上海富继电气有限公司
版权所有
沪ICP备12022913号-5
沪公网安备 31010102004818号